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A B S T R A C T   

This paper presents a rigorous analytical solution to the dynamics of a single-degree-of-freedom 
(SDOF) piezoelectric energy harvester (PEH) under the combined wind and base excitations using 
the harmonic balance method. The boundaries of the quenching region are predicted using the 
multi-scale method. An equivalent circuit model (ECM) is established to verify the analytical 
solution, and the simulation results based on the ECM are in good agreement with the analytical 
ones. Subsequently, the power limit of the SDOF PEH under the combined excitations is analysed 
for the first time using the impedance theory based on a simplified model. The maximum power 
amplitudes at different excitation frequencies are also sought by numerically sweeping the load 
resistance. It is found that the impedance theory that has been successfully adopted in the 
literature is inapplicable in analysing the power limit of the SDOF PEH under the combined 
excitations. The impedance plots obtained based on resistance sweeping clearly indicate that, in 
contrast to the conclusions given in the literature, impedance matching is not the condition to 
attain the power limit of the SDOF PEH under the combined excitations. A mathematical proof is 
provided for a reasonable explanation. Finally, it is demonstrated that numerical simulations 
based on the original model can verify the power limit calculated based on the simplified model.   

1. Introduction 

In the past two decades, researchers have devoted enormous efforts to developing various vibration energy harvesters and the 
associated fundamental theories [1–6]. Due to the ubiquity of vibrations, vibration energy harvesting technology is deemed as a vital 
solution to enable low-power consumption Internet-of-Things (IoTs) devices to be self-sustained. Since the ambient vibration intensity 
is often small, most vibration energy harvesters are designed to operate near the resonance mode to achieve a considerable power 
output. However, the ambient vibration energy mostly spreads over a broad spectrum and features uncertainties [7,8]. Once the 
external excitation frequency even slightly deviates from the resonant frequency of an energy harvester, its performance could be 
drastically deteriorated. Wind induced by atmospheric motion is also one of the most ubiquitous nature sources on Earth. Based on 
flow-induced vibration phenomena, researchers have proposed various wind energy harvesting techniques. According to the physical 
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mechanisms behind flow-induced vibration phenomena, wind energy harvesters can be classified into vortex-induced vibration (VIV) 
[9,10], galloping [11–13], and flutter [14,15] energy harvesters. Galloping energy harvesters usually have low cut-in wind speeds and 
can operate over a wide range of wind speed. Therefore, galloping energy harvesting has received lots of research interest. Provided 
that the wind speed is sufficiently large, a properly designed galloping energy harvester is able to produce a considerable power output. 
As compared to vibration energy harvesters, galloping energy harvesting is exempted from the frequency dependency. From this 
perspective, galloping energy harvesting appears to be more promising. 

In fact, there could be no significant difference between the design of an ordinary vibration energy harvester and a galloping energy 
harvester. By appropriately attaching a bluff body onto an ordinary vibration energy harvester, one can use it for galloping energy 
harvesting [16]. Similar to the development history of vibration energy harvesters, the design of galloping energy harvesters has 
evolved from linear [16–18] to nonlinear [19–22], and from single-degree-of-freedom (SDOF) [23] to multiple-degree-of-freedom 
(MDOF) [11,12,24,25]. Moreover, given the co-existence of winds and ambient vibrations in numerous scenarios, concurrent en-
ergy harvesting from the winds and base excitations has been proposed and investigated by researchers. Bibo et al. [26] studied a 
flutter energy harvester under the combined excitations of a base vibration and a wind load. They derived an approximate solution of 
the voltage response from the flutter energy harvester using the method of normal forms. They also conducted an experimental study 
for validation [27]. Dai et al. [28] considered a VIV-based piezoelectric energy harvester (PEH) under a base excitation and presented 
related simulation and experimental studies. However, analytical solutions to the VIV-based PEH under a base excitation were not 
provided. Through simulations and experiments, Yan et al. [29] and Bibo et al. [30] explored the dynamics of PEHs under the combined 
excitations of galloping and base vibration. Zhao et al. [21] introduced mechanical stoppers and magnetic bistable nonlinearity into a 
galloping energy harvester under base excitation. The experimental and simulation results indicated that the proposed concurrent 
energy harvester demonstrated a broadband ability. Analytical solutions to the mechanical and electrical responses of galloping PEHs 
could be found in the work by Yan et al. [31]. Zhao [32] further derived the analytical solution for an impact-engaged galloping PEH 
under a base excitation using the averaging method. The decoupling treatment adopted in [31,32] greatly simplified the mathematical 
problem. However, there lacks a solid proof behind that simplification. Therefore, one of the motivations of this work is to derive a 
more rigorous solution to the dynamic response of a galloping PEH under base excitation. 

The aforementioned studies focused on analysing the mechanical dynamics of PEHs under the combined excitations of wind and 
base vibration. It is well-known that the circuit part also plays a significant role in affecting the performance of a PEH [33–38]. In the 
field of wind energy harvesting, Abdelmoula et al. [39] investigated the effect of electrical impedance on the performance of a 
galloping PEH. Zhao et al. [40] presented the analytical solutions to a galloping PEH shunted to the interface circuits, including 
synchronized switching harvesting on inductor (SSHI) and synchronized charge extraction (SCE). A later study was also conducted by 
Zhao et al. to compare the performance of four interface circuits for galloping energy harvesting [41]. In recent years, Liao et al. [42] 
proposed a concept of power limit to evaluate the overall performance of a PEH under base excitation. The power limit refers to the 
maximum power that can ever be attained from a given PEH. Liao et al. [43] then extended the study to investigate the power limit of a 

Fig. 1. (a) Schematic of a PEH under combined excitations of base vibration and aerodynamic force; (b) the corresponding SDOF model.  
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PEH shunted to an SSHI interface circuit. In more recent, Lan et al. [44] derived the power limit of a PEH with nonlinear stiffness. 
However, all the above studies are limited to the analyses of PEHs under base excitations. Studies on the power limit of a PEH under the 
combined wind and base excitations have yet been reported in the literature. Therefore, the other motivation of this paper is to present 
a first attempt to answer the question: what is the power limit of a PEH under the combined galloping and base excitations? 

The rest of the paper is organized as follows. Section 2 overviews the SDOF PEH system to be investigated and gives the governing 
equations. In Section 3, an analytical solution to the dynamic response of the SDOF PEH under the combined excitations is derived. 
Section 4 presents a numerical verification of the derived analytical solution, along with a parametric study to reveal the effects of 
critical parameters on the energy harvesting performance of the SDOF PEH. The power limit of the SDOF PEH under the combined 
excitations is analysed in Section 5. The corresponding results and discussions are presented in Section 6. Finally, the concluding 
remarks are summarized in Section 7. 

2. System overview and governing equations 

Figure 1(a) shows the schematic of a PEH under combined excitations of base vibration and aerodynamic force. Without loss of 
generality, we can develop a lumped parameter model to describe the dynamics of the PEH. Since the response of the PEH around the 
fundamental resonance is of interest in this study, it can be simplified as an SDOF system as shown in Fig. 1(b). The detailed procedures 
for deriving the lumped parameters of the SDOF PEH can be referred to [25]. The widely adopted SDOF modelling technique is directly 
employed hereinafter. The governing equations of the PEH can be written as: 

m1ẍ(t)+ c1(ẋ(t) − ż(t) )+ k1(x(t) − z(t) )+ θv(t) =
1
2

ρLU2d

[

s1
ẋ(t)
U

− s3

(
ẋ(t)
U

)
3

]

(1)  

Cpv̇(t)+
v(t)
R

= θ(ẋ(t) − ż(t) ) (2)  

where m1, k1, and c1 are the mass, spring stiffness, and damping coefficient of the oscillator, respectively. θ is the electromechanical 
coupling coefficient of the attached piezoelectric transducer shunted with a resistor R. The clamped capacitance of the piezoelectric 
transducer is Cp. x(t) and z(t) are the displacements of the oscillator and the base, respectively. The wind of speed U applies an 
aerodynamic force FU on the oscillator. ρ is the mass density of the air. s1 and s3 are the empirical linear and cubic coefficients of the 
transverse galloping force. The characteristic area of the bluff body normal to the wind flow is L × d. 

3. Analytical solution 

This section presents the analytical solution to the dynamic responses of the SDOF PEH under the combined excitations. 

3.1. Harmonic balance method 

The harmonic balance method (HBM) is first adopted to seek the analytical solutions to the dynamic responses. The base 
displacement is assumed in the harmonic form as: 

z(t) = Zbsin(ωbt) (3)  

where Zb is the displacement amplitude, and ωb is the angular frequency. As the SDOF PEH is under the combined excitations of the 
base vibration and aerodynamic force, the displacement response of the SDOF PEH is assumed to contain two components. 

x(t) = xb(t)+ xg(t) (4)  

where xb(t) and xg(t) are the base excitation induced and the aerodynamic force induced response components, respectively. The 
subscripts b and g stand for base and galloping, respectively. To be specific, they are expressed as: 

{
xb(t) = a1(t)sin(ωbt) + b1(t)cos(ωbt)
xg(t) = g1(t)sin

(
ωgt
)
+ h1(t)cos

(
ωgt
) (5) 

Note that the self-excited response, i.e., xg(t), due to the galloping effect is also harmonic. From Eq. (2), it is learned that the voltage 
response is closely related to the displacement response. Thus, the voltage response is assumed in a similar form as: 

v(t) = vb(t) + vg(t) (6)  

where the base excitation induced and the aerodynamic force induced components of the voltage response are concretely expressed as: 
{

vb(t) = v1(t)sin(ωbt) + v2(t)cos(ωbt)
vg(t) = v3(t)sin

(
ωgt
)
+ v4(t)cos

(
ωgt
) (7) 

Note from Eq. (2) that the displacement response x(t) and the voltage response v(t) are linearly coupled, thus we can derive the 
explicit relationship between x(t) and v(t), then represent v(t) by x(t). Substituting Eqs. (4) and into Eq. (6), then balancing the 
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harmonic components, we obtain the following four equations: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− Cp v2(t)ωb +
v1(t)

R
+ θb1(t)ωb = 0

Cp v1(t)ωb +
v2(t)

R
− θa1(t)ωb + θZb ωb = 0

− Cp v4(t)ωg +
c1(t)

R
+ θh1(t)ωg = 0

Cp v3(t)ωg +
c2(t)

R
− θg1(t)ωg = 0

(8) 

Solving Eq. (8), one can represent v1(t) ~ v4(t) by a1(t) ~ h1(t): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1(t) =
Rθωb

(
Cp a1(t)Rωb − Cp RZb ωb − b1(t)

)

C2
pR2ω2

b + 1

v2(t) =
Rθωb

(
Cp b1(t)Rωb + a1(t) − Zb

)

C2
pR2ω2

b + 1

v3(t) =
Rθωg

(
Cp g1(t)Rωg − h1(t)

)

C2
pR2ω2

g + 1

v4(t) =
Rθωg

(
Cp h1(t)Rωg + g1(t)

)

C2
pR2ω2

g + 1

(9) 

Substituting Eq. (9) into Eq. (6) and using the relationship in Eq. (5), one can express the voltage response v(t) by xb(t) and xg(t) as 

v(t) =
Ke1

θ
xb(t) −

Ke1

θ
zb(t)+

Ke2

θ
xg(t)+

Ce1

θωb
ẋb(t) −

Ce1

θωb
żb(t) −

Ce2

θωg
ẋg(t) (10)  

where 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ke1 =
R2θ2ω2

bCp

C2
pR2ω2

b + 1
Ke2 =

R2θ2ω2
gCp

C2
pR2ω2

g + 1

Ce1 =
Rθ2ωb

C2
pR2ω2

b + 1
Ce2 =

Rθ2ωg

C2
pR2ω2

g + 1

(11) 

Substituting Eq. (10) into Eq. (1) eliminates the unknown variable v(t). After eliminating v(t), we substitute Eq. (5) into Eq. (1), then 
neglect the higher-order harmonics and balance the first-order harmonic terms. Four equations are obtained as follows: 

(
− m1 ω2

b + Ke1 + k1
)
a1 + ( − c1 ωb − Ce1)b1 − Ke1 Zb − k1 Zb

=
1

8U

(
3Lr2

1dρs3 ω3
b + 6Lr2

2dρs3 ωb ω2
g − 4U2ρLds1 ωb

)
b1

(12)  

(c1 ωb + Ce1)a1 +
(
− m1 ω2

b + Ke1 + k1
)
b1 − ωb c1 Zb − Ce1 Zb

=
1

8U

(
− 3Lr2

1dρs3 ω3
b − 6Lr2

2dρs3 ωb ω2
g + 4U2ρLds1 ωb

)
a1

(13)  

(
− m1 ω2

g + Ke2 + k1

)
g1 +

(
− c1 ωg − Ce2

)
h1

=
1

8U

(
6Lr2

1dρs3 ω2
bωg + 3Lr2

2dρs3 ω3
g − 4LU2dρs1 ωg

)
h1

(14)  

(
c1 ωg + Ce2

)
g1 +

(
− m1 ω2

g + Ke2 + k1

)
h1

=
1

8U

(
− 6Lr2

1dρs3 ω2
bωg − 3Lr2

2dρs3 ω3
g + 4LU2dρs1 ωg

)
g1

(15)  

where 
{

r2
1 = a2

1 + b2
1

r2
2 = g2

1 + h2
1

(16) 

It is worth noting that the time derivatives of the variables are forced to be zero to adapt to the steady-state assumption. The time 
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dependency is omitted at steady state, e.g., a1(t) → a1. Multiplying Eq. (14) by g1(t), and Eq. (15) by h1(t), then adding up the two 
equations yields 

− m1 ω2
g +Ke2 + k1 = 0 (17) 

Solving Eq. (17) gives the solution of ωg. On the other hand, by rearranging Eqs. (12)~ (15) and using Eq. (16) to simplify them, we 
obtain the following two equations: 

− 1024L2U4d2r2
1ρ2s2

1ω2
b + 4096Ls1 ωb dρr2

1(c1 ωb + Ce1)U3

+
(
1536L2s1 s3 ω4

bd2ρ2r4
1 + 4096

(
ω2

bc2
1 + 2Ce1 ωb c1 + C2

e1 + (Ke1 + k1)
2 )Z2

b

)
U2

+

⎛

⎜
⎝

− 4096ω4
bm2

1 − 8192Ce1 ωb c1 − 4096C2
e1 − 4096(Ke1 + k1)

2

+
(

3072L2r2
2s1 s3 ω2

gd2ρ2 − 4096c2
1 + 8192m1 (Ke1 + k1)

)
ω2

b

⎞

⎟
⎠r2

1U2

− 6144ρ
(

r2
2ω2

g +
ω2

br2
1

2

)

Ls3 ωb (c1 ωb + Ce1)dr2
1U

− 2304ρ2
(

r2
2ω2

g +
ω2

br2
1

2

)
2L2s2

3ω2
bd2r2

1 = 0

(18)  

(
m2

1ω4
g +

(
− 2Ke2 m1 + c2

1 − 2k1 m1
)
ω2

g + 2c1 Ce2 ωg + k2
1 + 2Ke2 k1 + C2

e2 + K2
e2

)
r2

2

=
9L2
(

2r2
1s3 ω2

b + r2
2s3 ω2

g − 4/3U2s1

)
2d2r2

2ρ2ω2
g

64U2

(19) 

Eqs. (18) and (19) only contain two unknown variables. Simultaneously solving them gives the solutions to r1 and r2. Substituting 
the solved r1 and r2 back into Eqs. (12) and (13), one obtains the corresponding a1 and b1. Finally, the voltage amplitudes of the base 
excitation induced and aerodynamic force induced components can be calculated as: 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Vb =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ke1

Cp

(
r2

1 − 2a1Zb + Z2
b

)
√

Vg = r2

̅̅̅̅̅̅̅
Ke2

Cp

√ (20) 

In addition, the root-mean-square (RMS) voltage amplitude can be calculated as: 

VRMS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V2
b + V2

g

2

√

(21)  

3.2. Multi-scale method 

In addition to the harmonic balance method, the multi-scale method is also employed to provide insights into the dynamic 
characteristics of the SDOF PEH under the combined excitations. First, we define the fast and slow timescales T0 = t and T1 = εt, where 
ε is a booking parameter. The governing equation (i.e., Eq. (1)) of the SDOF PEH is written as: 

m1 ẍ(t) + εc1 (ẋ(t) − ż(t) ) + ω2
1m1 (x(t) − z(t) ) + εθv(t)

=
1
2

ερU2Ld

(

s1
ẋ(t)
U

− s3

(
ẋ(t)
U

)
3

)
(22)  

where ω1 =
̅̅̅̅̅̅̅̅̅̅̅̅̅
k1/m1

√
. According to the multi-scale method, the solutions are sought in the perturbed form as: 

x(t) = x0(T0,T1)+ εx1(T0,T1) (23)  

v(t) = v0(T0, T1)+ εv1(T0, T1) (24) 

The time derivatives are thus changed to 

d
dt

= D0 + εD1 + o
(
ε2)

d2

dt2 = D2
0 + 2εD0D1 + o

(
ε2)

(25)  
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where D0 = ∂/∂T0 and D1 = ∂/∂T1. Substituting Eqs. (23) and (24) into Eqs. (22) and (2), equating the coefficients of ε0 on both sides of 
the equations gives: 

D0,0(x0(T0,T1) )+ω2
1x0(T0,T1) = cos(ΩT0)Zb ω2

1 (26)  

Cp D1(v0(T0,T1) )R − D1(x0(T0, T1) )Rθ + v0(T0,T1) = sin(ΩT0)ΩRZb θ (27)  

where D0,0 = ∂2/∂T2
0. Similarly, equating the coefficients of ε1 on both sides of the equations gives: 

ω2
1m1 x1(T0, T1) + 2m1D0,1(x0(T0,T1) ) + m1 D0,0(x1(T0,T1) ) + D0(x0(T0, T1) )c1

+θv0(T0,T1) = −
1

2U
ρLdD0(x0(T0, T1) )

(
(D0(x0(T0,T1) ) )

2s3 − U2s1
)
− sin(ΩT0)ΩZb c1

(28)  

Cp RD1(v0(T0,T1) ) + Cp RD0(v1(T0,T1) ) − θRD1(x0(T0,T1) )

− θRD0(x1(T0, T1) ) + v1(T0,T1) = 0 (29)  

where D0,1 = ∂2/∂T0∂T1. Eqs. (26) and (27) are first order linear differential equations, and the solutions can be easily obtained as: 
⎧
⎪⎨

⎪⎩

x0(T0,T1) = A1(T1)eiω1T0 + Af eiΩ T0 + cc

v0(T0,T1) =
− iω1θRA1(T1)eiω1T0

1 + iω1RCp
−

iΩθRZb eiΩ T0

1 + iΩRCp
−

iΩθRAf eiΩ T0

1 + iΩRCp
+ cc

(30)  

where Af =
ω2

1Zb

− 2Ω2+2ω2
1 

and cc denotes the conjugate of the preceding terms. It is worth noting that the term A1(T1)eiω1T0 corresponds to 

the aerodynamic force induced response, and Af eiΩ T0 represents the base excitation induced response. Substituting Eq. (30) into Eq. 
(28), then eliminating the secular term yields: 

d
dT1

A1(T1) = A1(T1)
(
Γ12 + iΓ3 − Γ4 (|A1(T1) | )

2 ) (31)  

where Γ1 =
ω2

1C2
p (LUdρs1 − 2c1)R2+2Rθ2+LUdρs1 − 2c1 − 2iCpR2θ2ω1

4(C2
p R2ω2

1+1)m1
, Γ2 = −

3LΩ2dρs3
2m1 U , Γ12 = Γ1 − Γ2A2

f , Γ3 = −
iCp R2θ2ω1

2(C2
p R2ω2

1+1)m1
, and Γ4 = −

3Ldρs3ω2
1

4m1U . 

Assuming the solution to Eq. (31) is in the form as: 

A1(T1) = a1(T1)eiθ1(T1) (32) 

To simplify the calculation, the electromechanical coupling effect is assumed to ignorable. Thus, we intentionally let Cp = 0, R =

0, and θ = 0. Subsequently, substituting Eq. (32) into Eq. (31), then separating the real and imaginary components yields: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d
dT1

a1(T1) =
(
− (a1(T1) )

2Γ4 + Γ12
)
a1(T1)

d
dT1

θ1(T1) = 0
(33) 

Based on the first equation of Eq. (33), one can derive the solution to a1(T1). 

a1(T1) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Γ12

ΛΓ12 e− 2 Γ12 T1 + Γ4

√

(34) 

where Λ is a constant of integration that is determined by the initial condition. It is noted that if Γ12 > 0, the denominator in the 
square root eventually approaches Γ4, and a1(T1) approaches 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Γ12/Γ4

√
. However, if Γ12 < 0, this denominator eventually approaches 

infinity, thus a1(T1) approaches 0. Therefore, the solution to Γ12 = 0 offers a clue for predicting the existence of the aerodynamic force 
induced component. 

Γ12 =
6Ldρs3 ω4

1

Ω2( − 2Ω2 + 2ω2
1
)

2
− LU2dρs1 + 2Uc1 = 0 (35) 

a1(T1) = 0 indicates that galloping disappears, which is the so-called quenching phenomenon [31]. Under the combined excita-
tions, the quenching phenomenon occurs when the base excitation frequency approaches the resonant frequency of the PEH and the 
galloping is suppressed by the base excitation. Therefore, the solution to Eq. (35) predicts the boundaries of the quenching region. 

4. Numerical verification and parametric study 

In this section, an equivalent circuit model (ECM) is established to verify the above theoretical solutions. In fact, one can cast the 
governing equations into the state-space form, then use numerical methods such as the Runge-Kutta method, to obtain the numerical 
results. The equivalent circuit model is introduced not only for numerical verification, but also to familiarize the readers with the 

G. Hu et al.                                                                                                                                                                                                             



Mechanical Systems and Signal Processing 168 (2022) 108724

7

equivalent circuit representation methodology, as it will be also adopted as a powerful tool to carry out the power limit analysis in the 
next section. 

Figure 2 shows the ECM of SDOF PEH under the combined excitations. ECM is established based on the electrical–mechanical 
analogies. In brief, the force and velocity in the mechanical domain correspond to the voltage and current in the electrical domain. The 
mechanical elements, such as the mass, stiffness and damper, are equivalent to the inductor, capacitor and resistor, respectively. A 
nonlinear transfer function is used to represent the aerodynamic force. More detailed procedures for developing an ECM of a piezo-
electric energy harvester can be referred to [9,12,45]. 

Figure 3(a) compares the analytical and numerical results of the RMS voltage amplitudes of the SDOF PEH under the combined 
excitations. The system parameters are listed in Table 1. The base excitation is controlled at a constant acceleration level of 1 m/s2. 
From Fig. 3(a), it can be seen that the analytical solutions derived in this study are in good agreement with the numerical results. The 
RMS voltage amplitude reaches the maximum near the resonant frequency of the SDOF PEH. Unlike the classic forced vibration of an 
SDOF PEH, after deviating from the resonant frequency, the RMS voltage amplitude first decreases, then ‘abnormally’ increases. 
Moreover, the RMS voltage amplitudes at the off-resonant frequencies are still considerably high. The voltage amplitudes of the base 
excitation induced and galloping induced components (Vb and Vg) presented in Fig. 3(b) provide the explanation for this phenomenon. 
It is observed that the voltage amplitude of the base excitation induced component, i.e., Vb, is just similar to a typical forced vibration 
frequency response. However, in addition to the base excitation induced voltage response, there also appears a galloping induced 
component due to the aerodynamic excitation. The galloping induced voltage response disappears near the resonant frequency of the 
SDOF PEH, while becomes significantly large when the SDOF PEH falls into an off-resonance state. It is thus revealed that the 
considerable voltage output from the SDOF PEH at the off-resonant frequencies is mainly originated from the galloping induced 
component, i.e., Vg. The grey-coloured area shown in Fig. 3(b) is the quenching region predicted by the multi-scale method (i.e., Eq. 
(35)). It represents the frequency range where the galloping induced component is suppressed by the base excitation. It can be found 
that the theoretical prediction matches well with the numerical result. 

As mentioned in the introduction that Yan et al. [31] adopted a decoupling treatment for simplification and derived the analytical 
solutions to the same problem. Within the quenching region, where the galloping effect is suppressed, i.e., the galloping-induced 
component becomes zero, the decoupling treatment is coincidently valid. However, when the excitation frequency shifts away 
from the resonant frequency, and the quenching phenomenon disappears, a significant discrepancy may occur due to the decoupling 
treatment. To compare the methods developed in this study and [31], the analytical solutions derived using the method proposed in 
Yan et al. [31] are provided in Fig. 3. One can note in Fig. 3(a) that near the resonant frequency, the analytical solutions derived using 
the method proposed in Yan et al. [31] also match well with the numerical results. However, there exists unneglectable discrepancy at 
the off-resonance frequencies. In Fig. 3(b), it can be clearly found that Vb predicted by both methods almost overlap with each other 
well. The discrepancy originates from the difference between their predictions about Vg. Considering the analytical solutions derived in 
this study are in good agreement with the numerical results, the analytical solutions derived using the method proposed in Yan et al. 
[31] overestimate Vg before the resonant peak and underestimate Vg after the resonant peak. The comparison results basically agree 
with the verification results presented in Yan et al. [31]. 

To provide more insights into the dynamic characteristics of the SDOF PEH, the time-domain responses at three typical frequencies 
(marked in Fig. 3(b) as Cases A, B, and C) are examined. For Case A, the base excitation frequency is set to be f/f1 = 0.85. According to 
the theoretical prediction, the voltage amplitudes of the base excitation induced and galloping induced components are, respectively, 
Vb = 7.07 V and Vg = 33.21 V. Fig. 4(a) shows the time-history voltage response of the SDOF PEH obtained from the numerical 
simulation. Fig. 4(b) shows an enlarged view of the steady-state voltage response. It is directly observed that the response resembles a 
modulated signal which contains more than one frequency component. Fig. 4(c) presents the fast Fourier transform (FFT) amplitude of 
the steady-state voltage response in Fig. 4(b). The FFT result clearly indicates that the voltage response contains two frequency 
components. The amplitudes of the two components are 7.067 V and 32.57 V, which agree well with the theoretical prediction. 
Moreover, the corresponding frequencies of the two components are 3.06 Hz and 3.606 Hz, respectively. By a simple calculation, one 
can find that 3.606 Hz ≈ f1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅
k1/m1

√
/2π, and 3.06 Hz ≈ 0.85f1. 

For Case B, the base excitation frequency is tuned to the resonant frequency of the SDOF PEH, i.e., f/f1 = 1. The theoretical analysis 
predicts that the galloping induced voltage response is supposed to disappear (Vg = 0 V), and the base excitation induced voltage 
amplitude, i.e., Vb, is about 66.65 V. Fig. 5 shows the simulated time-history voltage response, the steady-state voltage response, and 
the corresponding FFT amplitude of the SDOF PEH. It can be easily identified from the numerical results that the voltage response is 

Fig. 2. Equivalent circuit model of SDOF PEH under combined excitations.  
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harmonic, and the FFT spectrum plot is clean with only a single sharp peak. The frequency and the amplitude of the sole component are 
3.6 Hz ≈ f1 and 65.7 V, respectively. The numerical results agree with the theoretical predictions well. 

In the last Case C, the base excitation frequency is further increased to be larger than the resonant frequency of the SDOF PEH, i.e., 
f/f1 = 1.15. It is predicted by the theoretical analysis that the base excitation drives the SDOF PEH to vibrate, and the voltage amplitude 
produced due to the base excitation is about 6.217 V. In addition, the aerodynamic force activates the galloping oscillation of the SDOF 
PEH to produce a voltage output of 34.4 V. Fig. 6 presents the corresponding time-history response and FFT spectrum obtained from 
the numerical simulation. The numerical results confirm the appearance of the galloping induced voltage component. Moreover, the 
amplitudes of both components identified from the numerical results are Vb = 6.187 V and Vg = 33.27 V. Again, a good agreement is 
noted as compared to the theoretical prediction. 

The verified analytical solution provides a computationally much faster means for system performance prediction as compared to 
the numerical simulation. Therefore, a parametric study is then performed based on the analytical solution to investigate the effects of 
system parameters on the dynamics and energy harvesting performance of the SDOF PEH. Fig. 7(a) and (b) reveal the voltage 
amplitude profile for varying wind speed and base excitation frequency. The other parameters are kept the same as listed in Table 1. It 
can be noted in Fig. 7(a) that in general, the RMS voltage increases with the wind speed. Moreover, the RMS voltage produced by the 
SDOF PEH at the off-resonant frequencies becomes comparably large with the increase of wind speed. From Fig. 7(b), we can clearly 
compare and distinguish the contributions from the base excitation induced and galloping induced components. It is noted that when 
the wind speed is low, the galloping induced component disappears, i.e., the galloping phenomenon is inactivated. With the increase of 
the wind speed, the galloping phenomenon is activated and becomes more evident, leading to an increased Vg. Moreover, it is noted 
that increasing the wind speed does not only improve the galloping induced voltage amplitude Vg, but also results in an increase in the 
base excitation induced voltage amplitude Vb, especially around the resonant frequency of the SDOF PEH, i.e., f/f1 = 1. This is because 
the aerodynamic force brings a negative damping effect on the SDOF PEH. With the increase of the wind speed, the total effective 
damping coefficient of the SDOF PEH becomes smaller, thus the base excitation induced response (e.g., displacement and voltage) 
becomes larger. 

Figure 7(c) and (d) display the voltage amplitudes of the SDOF PEH versus the non-dimensional electromechanical coupling 
strength, i.e., α = θ/(190 µN/V), and the base excitation frequency. Putting aside the effect of the base excitation frequency, which has 
been discussed above, it is noted in Fig. 7(c) that the resonant peak is bent toward higher frequency with the increase of the wind 

(a) (b)
Fig. 3. (a) Comparison of harmonic balance method (HBM) predicted results and numerical results of RMS voltage amplitude; (b) HBM predicted 
voltage amplitudes of base excitation induced and galloping induced components. The grey-coloured area is the quenching region, i.e., the fre-
quency range within which Vg = 0, predicted by the multi-scale method (MSM) (i.e., Eq. (35)). 

Table 1 
System parameters of SDOF PEH under investigation.  

Electro-Mechanical parameters 

Effective mass m1 (g) 113.4 Electromechanical coupling θ (µN/V) 190 
Effective stiffness k1 (N/m) 58.02 Capacitance Cp (nF) 187 
Damping ratio ζ1 0.003 Load resistance R (Ω) 1012  

Aerodynamic parameters 
Air Density, ρ (kg/m3) 1.24 Bluff body height, L (m) 0.1 
Cross flow dimension, DB (m) 0.05 Linear aerodynamic coefficient, s1 2.5 
Cubic aerodynamic coefficient, s3 130 Wind speed U (m/s) 6  
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speed. Fig. 7(d) further shows that both the base excitation induced and galloping induced voltage response components exhibit a 
similar bending phenomenon. This phenomenon is easily understandable by referring to the electromechanical coupling mechanism 
that the electrical domain also affects the dynamics of the mechanical domain. With the increase of the electromechanical coupling 
strength, the electrical domain brings a significant change in the total effective stiffness of the SDOF PEH, resulting in the shift of the 
resonant peak. It is clear in Fig. 7(c) and (d) that a stronger electromechanical coupling is associated with a larger total effective 
stiffness or a higher resonant frequency. 

5. Power limit analysis 

In the previous sections, analytical solutions to the SDOF PEH and the effects of various parameters on its energy harvesting 
performance have been presented and investigated. This section aims to analyse the power limit of the SDOF PEH. As well-known and 
has been partially revealed in Fig. 7(c), the energy output from a PEH increases with the electromechanical coupling strength. 
However, once the electromechanical coupling strength reaches a certain high level, the power output saturates, i.e., it cannot be 
further increased. The power saturation phenomenon indicates an overall maximum power that can be attained for a given PEH. The 
overall maximum power that is attainable is termed the power limit. Obviously, a PEH with a higher power limit represents a better 
design under given constraints of material and structural strength. Therefore, we can use the power limit as a figure of merit to evaluate 
the design of a PEH. As mentioned in the introductory section, studies have been conducted to investigate the power limit of con-
ventional base-excited PEH [42,44]. Yet, related study to examine the power limit of a PEH under the combined excitations has not 
been reported. The difficulties in the analysis of a PEH under the combined excitations have been briefly mentioned in the intro-
duction. The details of the challenge will be elaborated in this section. 

The impedance method has been proven to be powerful in investigating the power limit of a PEH [42,44]. However, it is only 

Fig. 4. (a) Time-history voltage response of SDOF PEH under base excitation with frequency of f/f1 = 0.85; (b) enlarged view of steady-state voltage 
response over the time period from 150 s to 154 s; (c) fast Fourier transform (FFT) amplitude of steady-state voltage response. 
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applicable for linear systems. For a galloping PEH, the aerodynamic force in the governing equations brings nonlinearity. Therefore, 
the following treatments are implemented to simplify the problem. The numerical examples at the end of this section will justify the 
simplifications. 

First, the governing equation is rewritten in the form as: 

m1ÿ(t) + c1ẏ(t) + k1y(t) + θv(t)

=
1
2

ρLU2d

[

s1
ẏ(t)
U

− s3

(
ẏ(t)
U

)
3

]

− m1 z̈(t)
(36)  

where y(t) is the relative displacement of the SDOF PEH to the base, i.e., y(t) = x(t)-z(t). In fact, the third-order term at the right hand 

side of Eq. (36) should be 
(

ẏ(t)+ż(t)
U

)
3. The primary reason that we can intentionally omit ż(t) is given as follows. Considering that the 

power limit happens only near the resonance state of the SDOF PEH, the velocity of the SDOF PEH, i.e., ẏ(t), at the resonance state is 
much larger than ż(t). Thus, it is inferred that neglecting ż(t) will not result in a remarkable error but will significantly ease the 
analysis. 

Subsequently, the governing equations are recast in the following form: 

Fig. 5. (a) Time-history voltage response of SDOF PEH under base excitation with frequency of f/f1 = 1; (b) enlarged view of steady-state voltage 
response over the time period from 150 s to 154 s; (c) fast Fourier transform (FFT) amplitude of steady-state voltage response. 
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m1

θ2
d
dt
[ − θẏ(t) ] +

c1

θ2 [ − θẏ(t) ] +
k1

θ2

∫

[ − θẏ(t) ]dt + θv(t)

=
ρLU2d

2θ2

[

s1
θẏ(t)

U
− s3

(
θẏ(t)

U

)
3

]

−
m1

θ
z̈(t)

(37)  

Cpv̇(t)+
v(t)
R

= θẏ(t) (38) 

By comparing Eqs. (37) and (38) with typical differential equations of electrical circuits, we find that they have exactly the same 
mathematical form. Thus, we can establish an equivalent circuit model (ECM) that abides by the same governing equations. The 
equivalent elements of the circuit model are: 

Ls =
m1

θ2 , Cs =
θ2

k1
, Rs =

c1

θ2, Veq = −
m1Acc

θ
, ieq = − θẏ(t) (39) 

For the nonlinear aerodynamic force, using the harmonic balance method and neglecting the higher-order harmonics, we can 
linearize it as: 

ρLU2d
2θ2

[

s1
θẏ(t)

U
− s3

(
θẏ(t)

U

)
3

]

≈

[
s1ρLUd

2θ2 −
3s3ρLd
8Uθ2 ω2r2

]

θẏ(t) (40)  

where r is the amplitude of y(t). The detailed derivation and proof can be referred to [44]. Based on Eq., (40) we can represent the 

Fig. 6. (a) Time-history voltage response of SDOF PEH under base excitation with frequency of f/f1 = 1; (b) enlarged view of the steady-state 
voltage response over the time period from 150 s to 154 s; (c) fast Fourier transform (FFT) amplitude of steady-state voltage response. 
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aerodynamic force term as a variable resistor in the equivalent circuit. The nonlinear resistor is frequency-dependent and amplitude- 
dependent as follows 

Rn =
1
θ2

(

−
s1ρLUd

2
+

3s3ρLd
8U

ω2r2
)

(41) 

Figure 8 shows the schematic of the obtained ECM. Note the difference from the ECM presented in Fig. 2 that the aerodynamic force 
term is linearized and represented by a variable resistor rather than a nonlinear transfer function. 

Fig. 7. (a) Analytical predictions of RMS voltage and (b) voltage amplitudes Vb & Vg versus wind speed (U) and dimensionless excitation frequency 
(f/f1); (c) analytical predictions of RMS voltage and (d) voltage amplitudes Vb & Vg versus dimensionless electromechanical coupling coefficient (α) 
and dimensionless excitation frequency (f/f1). 

Fig. 8. Equivalent circuit representation of SDOF PEH under combined excitations.  
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In Fig. 8, it is noted that the equivalent electrical elements of the mechanical domain can be deemed as the internal impedance of 
the voltage source. The internal impedance can be written as: 

Zmech = iωLs +Rs +Rn +
1

iωCs
(42) 

The load resistor together RL with the piezoelectric capacitance Cp constitute the external load impedance. 

Zelec =
1

iωCp
||ZL (43)  

where ZL = RL + iXL. We temporarily assume the electrical load has an imaginary part XL, i.e., reactance. According to the studies in 
[42,44], the power limit can be attained when the external impedance matches the internal impedance. In other words, the external 
impedance expressed in the complex number form must equal the complex conjugate of the internal impedance. As a result, the 
reactance components cancel each other, and the power limit will only depend on the resistance component of the internal impedance. 
The impedance matching theory requires: 

Zelec = Z*
mech (44)  

where the asterisk subscript indicates taking the conjugate of the parameter. Substituting Eqs. (42) and (43) into Eq. (44) yields the 
optimal load that can satisfy the impedance matching condition. 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

RL =
(c1 − cn1 + cn3)θ2

(
θ2 + Cp

(
k1 − m1 ω2) )2 + (c1 − cn1 + cn3)

2ω2C2
p

XL =
( − m1 ω2 + k1

)[
θ2 + Cp

(
k1 − m1 ω2) ]+ (c1 − cn1 + cn3)

2ω2Cp

ω
[(

θ2 + Cp
(
k1 − m1 ω2) )2 + (c1 − cn1 + cn3)

2ω2C2
p

]

(45)  

where cn1 =
s1ρLUd

2 , and cn3 =
3s3ρLd

8U ω2r2. For the condition on RL in Eq. (45), we know it is easily achievable regardless of the elec-
tromechanical coupling strength, since we can always select a suitable resistor with the desired value. Whether the condition on XL can 
be satisfied determines whether impedance matching can be realized. Recalling that the study presented in this paper is limited on the 
SDOF PEH shunted to a resistive load, XL needs to be zero to attain the power limit. Once the system parameters are given, the problem 
becomes: by only varying the excitation frequency ω, can XL be tuned to zero? To answer this question, we force the numerator of XL to 
be zero. 

(
− m1 ω2 + k1

)[
θ2 + Cp

(
k1 − m1 ω2) ]+(c1 − cn1 + cn3)

2ω2Cp = 0 (46) 

By rearranging Eq. (46), one will notice that it is actually a quadratic equation of ω2. Since the nature of ω requires it to be a real 
positive number, the solution to Eq. (46) must be a real positive number as well. Using the Vieta’s formulas, we can easily obtain the 
explicit expressions of the solutions to Eq. (46). A necessary condition to ensure that Eq. (46) has real solutions is found to be: 

Δ =
[
(c1 − cn1 + cn3)

2Cp − m1 θ2 ]2 − 4k1 m1C2
p(c1 − cn1 + cn3)

2 > 0 (47) 

Rearranging Eq. (47) yields: 

Θ2 > 4ζ1

(

1 −
cn1

c1
+

cn3

c1

)

+ 4ζ2
1

(

1 −
cn1

c1
+

cn3

c1

)
2 (48)  

where Θ2 = θ2

Cpk1 
is a non-dimensional parameter that indicates the electromechanical coupling strength, and ζ1 = c1

2
̅̅̅̅̅̅̅̅
k1m1

√ . Eq. (48) 

manifests that only when the coupling strength, i.e., Θ2, is sufficiently large, the impedance matching condition becomes attainable. 
Moreover, when Eq. (48) is valid, there should exist two solutions. When Δ = 0, i.e., the sign of GT (greater than) in Eq. (48) becomes 
the sign of equality, there exists only a single solution. By convention, we refer to the situations of two solutions, a single solution and 
no solution, respectively, as the strongly coupled, critically coupled and weakly coupled cases. Under the assumption of impedance 
matching, the power limit can be obtained: 

Plim =
V2

eq

4(Rs + Rn)
=

(m1Acc)
2

4
(

c1 −
s1ρLUd

2 +
3s3ρLd

8U ω2r2

) (49) 

Unlike the linear PEH investigated in [42] and the nonlinear PEH studied in [44], the internal resistance, i.e., the denominator of 
Eq. (49), of the SDOF PEH under the combined excitations is not a constant, but a frequency and amplitude-dependent variable. That is 
to say, we still cannot ascertain the power limit based on the current form of Eq. (49). To obtain the power limit, the corresponding ω 
an r in Eq. (49) must be determined first. On one hand, turning back to the harmonic balance method derived solution in Section 3.1 
will complicate the problem. On the other hand, the governing equations have actually been simplified at the most beginning of the 
power limit analysis. Therefore, a simpler approach is proposed to seek the solution to the unknown variables ω an r in Eq. (49). 
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Applying the Laplace transform to Eqs. (36) and (38), then eliminating the unknown parameter, one obtains an equation of r, as well as 
ω. 

F1 = r2
[(

− ω2m1 + k1 + ke
)2 + ω2(c1 − cn1 + cn3 + ce)

2
]
− (m1Acc)

2 = 0 (50)  

where ke =
Cp(θRLω)2

1+(CpRLω)2, and ce = RLθ2

1+(CpRLω)2. RL needs to be replaced by the matched resistance in Eq. (45), which is in turn a function of ω 

and r. It is worth mentioning that Eq. (50) is only applicable around the resonance state of the SDOF PEH, since the prerequisite for 
obtaining Eq. (50) is that the galloping induced component disappears. Recalling that the impedance matching condition requires XL to 
be zero, another equation is then obtained: 

F2 =
(
− m1 ω2 + k1

)[
θ2 + Cp

(
k1 − m1 ω2) ]+(c1 − cn1 + cn3)

2ω2Cp = 0 (51) 

Solving Eqs. (50) and (51) gives the solution to ω and r. Substituting them back into Eq. (49) yields the power limit. 

6. Results and discussions 

For the given system parameters listed in Table 1, the power limit of the SDOF PEH is computed using the method developed in 
Section 5. Due to the complexities of Eqs. (50) and (51), a graphical approach is adopted to seek the solutions. Briefly speaking, we plot 
the functions, i.e., F1 and F2, versus ω and r as shown in Fig. 9. They form two curved surfaces in the three-dimensional space. The zero- 
plane (yellow) is also plotted. It is easy to know that the solutions must exist on the zero-plane. In addition, the solutions must be on the 
intersection edge of the curved surface F1 and the curved surface F2. Fig. 9(a) shows the result when θ = 190 μN/V. In Fig. 9(a), we find 
no intersection of the two curved surfaces, which implies that there is no solution to Eqs. (50) and (51). As predicted by the impedance 
matching theory, when the electromechanical coupling strength is weak, the power limit cannot be attained. The result in Fig. 9(a) 
tallies with the impedance matching theory. 

Subsequently, θ is then increased to 1900 μN/V. Fig. 9(b) shows the corresponding results. Two intersection points are observed in 
Fig. 9(b), which indicate two solutions to Eqs. (50) and (51). According to the theory in Section 5 and the conclusions in [42,44], the 
existence of two solutions indicates that θ = 1900 μN/V corresponds to a strong coupling case. By substituting the graphically 
identified solutions into Eq. (49), the power limit of the SDOF PEH under combined excitations is estimated to be about 70.09 mW. We 
also numerically compute the maximum power output from the SDOF PEH by sweeping the resistance for verification. The results are 
presented in Fig. 10. It can be seen that when θ is small, the maximum power amplitude is quite small. When θ is increased to a certain 
level, e.g., θ = 5 × 190 μN/V which represents a nearly critically coupled case, the maximum power amplitude approaches a constant 
value. 

Further increasing θ to 1900 μN/V cannot increase the power amplitude anymore. But it is noted that when θ = 1900 μN/V, there 
appear two peaks in the power spectrum. The appearance of dual-peaks in the power spectrum agrees with the double-solution case 
shown in Fig. 9(b). The phenomena revealed by the numerical results seem to be able to capture the characteristics SDOF PEH on 
power limit, conforming to the above power limit analysis. Unfortunately, the maximum power amplitude does not match the above 
theory: the actual power limit identified from the numerical results is about 94.78 mW, which is much larger than the predicted power 
limit (i.e., 70.09 mW) using the impedance matching theory. 

To address the concern of any mathematical mistakes in the above theory, we employ it to investigate a classical linear PEH as an 
additional verification. To be more specific, we let s1 and s3 be zero to neglect the aerodynamic force effect. As the strong coupling case 
is of the most interest, θ is set to be 1900 μN/V. Fig. 11 presents the power spectrum and the impedance plot of the SDOF PEH without 
the influence of the aerodynamic force. The power spectrum in Fig. 11(a) is obtained by numerically sweeping the resistance. The 
power limit is evaluated using Eq. (49). Both results show that the power limit of the linear case is about 208.9 mW. It can be found that 

Fig. 9. F1 and F2 versus ω and r (a) when θ = 190 μN/V, (b) when θ = 1900 μN/V.  
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for the linear case, the impedance matching theory well predicts the power limit of the SDOF PEH. Fig. 11(b) shows the corresponding 
impedance plot based on the numerical results. It is observed that when the power limit is achieved, the mechanical impedance 
(internal impedance) matches the electrical impedance (external impedance). Thus, the results in Fig. 11(b) further confirm the 
impedance matching theory. In addition, we can note that the impedance matching occurs at two places, which explains the dual-peaks 
phenomenon in Fig. 11(a). 

From the above studies, it is noted that the power limit derived based on the impedance matching theory is applicable for the linear 
case but not the nonlinear case. We thus speculate that impedance matching may not be the essential condition for attaining the power 
limit of the SDOF PEH under the combined excitations. To answer this question, the impedance plots of the SDOF PEH under the 
combined excitations are examined. Fig. 12 shows the results of the SDOF PEH with different electromechanical coupling strengths. 
Note that ‘Mechanical’ and ‘Electrical’ in the legend denote the mechanical (internal) and electrical (external) impedances, respec-
tively. Fig. 12(a) and (b) present the results of a weakly coupled case (i.e., θ = 190 μN/V). The maximum power attained is only about 
8.913 mW. By inspecting the impedance plot, it can be seen that there is no intersection of the mechanical and electrical impedance 
curves. This agrees with the theory in Section 5 that when the electromechanical coupling strength is small (i.e., Eq. (48)), the 
impedance matching condition can not be satisfied. 

Figure 12(c) and (d) present the results of the case close to critical coupling strength (i.e., θ = 5 × 190 μN/V). According to the 
impedance matching theory, a critically coupled case should have a single solution. The results in Fig. 12(c) are obtained by 
numerically sweeping the resistance. Since the sweeping rate cannot be infinitely small, the numerical results exhibit minor ripples 
around the peak. For this reason, we pick several points with almost the same amplitudes on top of the peak in the power spectrum to 
find their corresponding impedances. From Fig. 12(d), it is observed that the electrical and mechanical impedances have one inter-
section point. However, the power limit is not attained at this intersection point, i.e., the impedance matching condition. Instead, the 
power limit is achieved when the mechanical and electrical impedance are, respectively, at the green circles and black crosses in the 
impedance plot. The result in Fig. 12(d) preliminarily suggests that the power limit of the SDOF PEH under the combined excitations 
does not follow the impedance matching theory. 

The results for a strong coupling strength (i.e., θ = 1900 μN/V) are presented in Fig. 12(e) and (f). As compared with the critically 
coupled case, the maximum power attained is almost the same, around 94.78 mW. Fig. 12(f) is the counterpart of Fig. 11(b). It can be 

Fig. 10. Maximum power of the SDOF PEH with different electromechanical coupling strength.  

Fig. 11. (a) Power spectrum of the SDOF PEH without the influence of the aerodynamic force when θ = 1900 μN/V; (b) the corresponding 
impedance plot. The green circles and black crosses in the right-column graph, respectively, indicate the corresponding mechanical and electrical 
impedances of the power limit cases marked with purple points in the left-column graph. Note that the black crosses overlap with the green circles. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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found that for the linear case (Fig. 11(b)), the power limit is attained when the mechanical and electrical impedances match each 
other. However, the results in Fig. 12(f) clearly indicate that it is not the case for the SDOF PEH under the combined excitations, where 
the power limit is achieved when the mechanical and electrical impedance are, respectively, at the green circles and black crosses. 
These results further confirm that the impedance matching theory becomes invalid for analysing the power limit of the SDOF PEH 
under the combined excitations. The potential reason for the inapplicability of the impedance theory is provided below. In the linear 
PEHs, the impedance theory is applicable, since the internal resistance (i.e., the damping coefficient in the mechanical domain) is 
invariant [42]. Hence, impedance matching is the only condition to obtain the maximum power output. For the nonlinear PEH 
investigated in Lan et al. [44], nonlinearity exists as a stiffness term, and the damping coefficient is still invariant. Therefore, the 
impedance theory can be extended to analyse the power limit of that nonlinear PEH. Unfortunately, the SDOF PEH presented in this 
study involves a nonlinearity in the form of a damping-like term in the governing equations. Thus, the internal resistance of the SDOF 
PEH under the combined excitations is variant. To explain that the impedance matching theory is not applicable for the case with a 
variant internal resistance, we provide a simple but straightforward mathematical proof below. 

First, the maximum power transfer theorem is briefly reviewed. Considering a general voltage source shunted to a resistance load, 
the power transferred from the source to the load resistor can be written as: 

P =
V2

soureceRexternal

(Rinternal + Rexternal)2 (52) 

Assuming the internal resistance, i.e., Rinternal, is a constant, taking the derivative of P to Rexternal, then forcing it to be zero, one 
obtains the solution of the optimal resistance for obtaining the maximum power. By following the above procedures, it is found as in 
Eq. (53) that the maximum power that can be transferred from the source to the load when the internal resistance exactly matches the 
load resistance. 

Fig. 12. Power spectrum of SDOF PEH under combined excitations for (a) θ = 190 μN/V, (c) θ = 5 × 190 μN/V, (e) θ = 1900 μN/V; and corre-
sponding impedance plots for (b) θ = 190 μN/V, (d) θ = 5 × 190 μN/V, (f) θ = 1900 μN/V. The green circles and black crosses in the right-column 
graphs, respectively, indicate the corresponding mechanical and electrical impedances of the power limit cases marked with purple points in the left- 
column graphs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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∂P
∂Rexternal

=
V2

sourece(Rinternal − Rexternal)

(Rinternal + Rexternal)3 = 0 (53) 

The above statement is the maximum power transfer theorem. As discussed in Section 5, for the SDOF PEH under the combined 
excitations, its internal resistance is both frequency and amplitude-dependent. Note that the dynamic response amplitude is actually 
dependent on the load resistance, especially under the strong coupling condition. Therefore, the internal resistance is, in fact, 
dependent on the external resistance. Taking the derivative of P to Rexternal, then forcing it to be zero yields: 

∂P
∂Rexternal

=

V2
sourece

(

− 2Rexternal
∂Rinternal
∂Rexternal

+ Rinternal − Rexternal

)

(Rexternal + Rinternal)3 = 0 (54) 

According to Eq. (54), it can be found that as ∂Rinternal
∂Rexternal

∕= 0, the maximum power transfer is not realized at Rinternal = Rexternal. Note that 
in the above derivations, the reactance components are neglected just for simplicity. The above conclusion is still valid even the 
reactance components are taken into account. 

Prior to the concluding remarks, one may notice that all the above results are obtained based on the simplified model (i.e., Eqs. (37) 
and (38)) presented in Section 5. Whether these predictions are valid for the original model (i.e., Eqs. (1) and (2)) remains a question 
that has not been answered. To answer the question, we substitute the optimal parameters predicted based on the simplified model into 
the original model (i.e., Eqs. (1) and (2)) for simulation. The system parameters are the same as those listed in Table 1, a strong 
coupling coefficient θ = 1900 μN/V is used to enable the attainability of the power limit. Both the actual optimal parameters obtained 
using resistance sweeping and the predicted optimal parameters determined using the impedance matching theory are listed in 
Table 2. 

The simulation results based on the original model are presented in Fig. 13. The base excitation frequency and the load resistance 
are set according to the parameters given in Table 2. Using the optimal parameters obtained based on resistance sweeping, the results 
in Fig. 13(a) and (b) correspond to the first and second power peaks, respectively, where the voltage amplitudes are 51.89 and 366.30 
V, respectively. Using the optimal parameters obtained based on the impedance matching theory, Fig. 13(c) and (d) show the voltage 
responses corresponding to the first and second power peaks, respectively, with amplitudes of 29.87 V and 480.40 V, respectively. As 
compared to the results in Table 2, it can be found that the results from the numerical simulations based on the original model are in 
good agreement with the results obtained based on the simplified model. Therefore, the power limit analysis presented in this section is 
thus well verified. 

7. Conclusions 

This paper has presented a rigorous solution to the dynamic response of an SDOF PEH under the combined wind and base exci-
tations. The boundaries of quenching have also been derived for providing an in-depth understanding of the dynamics of the SDOF PEH 
under the combined excitations. According to electrical–mechanical analogies, an equivalent circuit model has been developed with 
consideration of the base excitation and the aerodynamic force induced by the wind load. The equivalent circuit simulation results 
have verified the analytical solutions in terms of both the voltage frequency response and the boundaries of quenching. Moreover, the 
power limit analysis of the SDOF PEH has been explored for the first time. The impedance matching theory has been first employed to 
predict the power limit of the SDOF PEH under the combined excitations, and the expression of the power limit has been derived. In 
addition, the maximum power amplitudes have been sought by sweeping the resistance. The comparison results, together with the 
impedance plots, have indicated that impedance matching is not the condition of attaining the power limit of the SDOF PEH under the 
combined excitations. A simple yet straightforward proof has been offered to explain the inapplicability of the impedance matching 
theory in the present case. In brief, due to the damping-like aerodynamic force, the total effective damping in the mechanical domain 
becomes a function of the load resistance. Therefore, the equivalent internal resistance becomes variant, and the classic maximum 
power transfer theorem is no longer valid. The methodologies and conclusions presented in this paper can provide some guidelines for 
analysing similar piezoelectric energy harvesting systems in the future. 

Table 2 
The optimal parameters obtained based on the simplified model.   

Actual (resistance sweeping) Predicted (impedance matching) 

First peak  ω/ω1 = 1.0024  ω/ω1 = 1.0005  
Vop = 51.93 V  Vop = 29.89 V  
Rop = 2.848 × 104 Ω  Rop = 1.274 × 104 Ω  

Plim = 94.78 mW  Plim = 70.1 mW  

Second peak  ω/ω1 = 1.1515  ω/ω1 = 1.1539  
Vop = 366.53 V  Vop = 480.29 V  

Rop = 1.417 × 104 Ω  Rop = 3.291 × 104 Ω  
Plim = 94.80 mW  Plim = 70.1 mW  
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